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Abstract. There has been a considerable amount of interest in recent years on the robustness of networks
to failures. Many previous studies have concentrated on the effects of node and edge removals on the
connectivity structure of a static network; the networks are considered to be static in the sense that no
compensatory measures are allowed for recovery of the original structure. Real world networks such as the
world wide web, however, are not static and experience a considerable amount of turnover, where nodes and
edges are both added and deleted. Considering degree-based node removals, we examine the possibility
of preserving networks from these types of disruptions. We recover the original degree distribution by
allowing the network to react to the attack by introducing new nodes and attaching their edges via
specially tailored schemes. We focus particularly on the case of non-uniform failures, a subject that has
received little attention in the context of evolving networks. Using a combination of analytical techniques
and numerical simulations, we demonstrate how to preserve the exact degree distribution of the studied
networks from various forms of attack.

PACS. 89.75.Fb Structures and organizations in complex systems – 89.75.Hc Networks and genealogical
trees

1 Introduction

Recent years have witnessed a substantial amount of inter-
est within the physics community in the properties of net-
works [1–3]. Techniques from statistical physics coupled
with the widespread availability of computing resources
have facilitated studies ranging from large scale empiri-
cal analysis of the worldwide web, social networks, bio-
logical systems, to the development of theoretical models
and tools to explore the various properties of these sys-
tems [4–6].

A relatively large body of work has been devoted to the
study of degree distributions of networks, focusing both
on their measurement, and formulation of theories to ex-
plain their emergence and their effects on various proper-
ties such as resilience and percolation. These studies are
mostly aimed at networks in the real world that evolve
naturally, in the sense that they are driven by dynamical
processes not under our control. Representative examples
being social, biological networks and information networks
like the world wide web, which though manmade, grows in
a distributed fashion. There are however different classes
of infrastructure related networks such as the transporta-
tion and power grids, communication networks such as the
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telephone and internet, that evolve under the direction of
a centrally controlled authority.

In addition to these is a relatively new class of networks
which falls in between these two types, the classic example
being peer-to-peer file-sharing networks. These networks
grow in a collaborative, distributed fashion, so that we
have no direct influence over their structure. However, we
can manipulate some of the rules by which these form, giv-
ing us a limited but potentially useful influence over their
properties. It is a well established fact, that the structure
of such networks is directly related to their performance.
In view of this, a certain degree of effort has been made
to tailor these designer networks towards structures that
optimize certain properties such as robustness to removal
of nodes and efficient information transfer among other
things [7,8]. These networks typically experience a signif-
icant amount of vertex/edge turnover, with users joining
and leaving the network voluntarily, possible failures of
key components and resources, or intentional attacks such
as Denial of Service. These factors can lead to severe dis-
ruption of the network structure and as a result, loss of its
key properties. In the face of this, it is natural to extend
our analysis to the effects of these failures/attacks and
use our limited control to attempt to adaptively restore
the original structure of these networks.

http://dx.doi.org/10.1140/epjb/e2008-00147-4
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Previous work has focused on the effects of disruption
on static networks, where authors have studied the con-
nectivity structure under the random/targeted removal of
nodes and edges [9–11]. The network is considered static
in that no compensatory measures, such as the introduc-
tion of new edges or nodes, are permitted. The effect of
these removals have been measured against the existence
of the giant component : the largest set of vertices in the
network of O(n), where n is the number of nodes, that
are connected to each other by at least one path. A rep-
resentative example can be found in the paper by Albert
et al. [12], where they studied the size of the giant com-
ponent of scale free networks such as the internet, under
simulated random failures and targeted attacks on high
degree nodes. One of the interesting things they found
was that, while these networks were remarkably robust to
random failures, they were extremely fragile to targeted
attacks. This emphasizes the importance of non-uniform
removal strategies.

Unlike in the static case, the networks considered in
this paper evolve in time with sustained node and edge
removals. The network is allowed to react to these disrup-
tions via the introduction of new nodes and edges, chosen
to be attached in a manner such that the network retains
it original form, at least in terms of the degree distribu-
tion. Such models, conventionally referred to in the lit-
erature as reactive networks have been discussed before,
see [13,14] for instance. Here we assume that the designers
of the network are only aware of the statistical properties
of the removed nodes and have no ability to influence the
existing network beyond the introduction of new nodes or
reattachment of those removed. Consequently they have
two processes under their control to compensate for the
attack. The first is the degree of the introduced vertices
and the second is the process by which a newly introduced
vertex chooses to attach to a previously extant vertex on
the network. Failure is thus compensated by adding nodes
and edges chosen from an appropriate degree distribution
and attaching them to the network via specially tailored
schemes. Note that in our model, one can re-introduce
nodes that have been removed or introduce completely
new sets of nodes. The former case could be indicative of
say a computer in a peer-to-peer network that loses its
connection, and would like to reconnect. The latter could
represent the permanent loss of web-pages from the world
wide web and the introduction of a new web-page. We use
the attachment kernel of Krapivsky and Redner [15], to
simulate the introduction of nodes and edges, and via the
introduction of a deletion kernel we analyze the interesting
and neglected case of non-uniform deletion.

A variety of models have been proposed to simulate
network evolution and growth where vertices are both
added and deleted [16–20], but these have concentrated
on the relatively simple case of uniform deletion. We
will show that under uniform failures, the appearance of
degree-degree correlations, that typically arise as a result
of growth processes, as discussed in [2], can be neglected.
Previous models have taken advantage of precisely this
fact to circumvent the difficulty of dealing with degree-

degree correlations. For the case of non-uniform deletion,
correlations cannot be ignored. In this paper we confront
this issue by demonstrating how to preserve an initially
uncorrelated network throughout the evolution process
with the introduction of an additional rate equation for
the degree-degree correlations. We give analytical results
and numerical simulations for a variety of degree distribu-
tions under various forms of attack. In all the cases that
we study, we recover the exact degree distributions.

2 The model

Consider a network which evolves under the removal and
addition of vertices. In each unit of time we add 1 vertex
and remove r vertices. Removal of a vertex also implies
that all the edges incident on that vertex vanish and con-
sequently the degree of vertices at the end of those edges
decrease. Here r can be interpreted as the ratio of vertices
removed to those added, so r < 1 represents a growing
network, r > 1 a shrinking one, while r = 1 implies vertex
turnover but fixed network size. The equations to follow
represent the completely general case. However, for the
purposes of this paper we will specialize to networks of
constant size as we assume that the network already ex-
ists and we would like to preserve its original structure,
by balancing the rate of attack against the rate of repair.

Let pk be the fraction of nodes in the network that at
a given time have degree k. By definition then it has the
normalization: ∑

k

pk = 1. (1)

In addition to this we would like to have freedom over the
degree of the incoming vertex. Let mk be the distribution
from which the degree of new vertices are drawn, with the
constraint

∑
k mk = c. We also have to consider how a

newly arriving vertex chooses to attach to other vertices
extant in the network and how a vertex is removed from
the same. Let πk be the probability that a given edge
from a new node is connected to a node of degree k, mul-
tiplied by the total number of nodes n. Then πkpk is the
probability that an edge from a new node is connected to
some node of degree k. Similarly, let ak be the probabil-
ity that a given node with degree k fails or is attacked
during one node removal also multiplied by n. Then akpk

is the total probability to remove a node with degree k
during one node removal. Note that the introduction of
the deletion kernel ak is what sets our model apart from
previous models describing the network evolution process.
Since each newly attached edge goes to some vertex with
degree k, we have the following normalization conditions:

∑
k πkpk = 1, (2)∑
k akpk = 1. (3)

2.1 Rate equation

Armed with the given definitions and building on the work
done previously by [19], we are now in a position to write
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down a rate equation governing the evolution of the degree
distribution. For a network of n nodes at a given unit of
time, the total number of nodes with degree k is npk.
After one unit of time we add one vertex and take away
r vertices, so the number is (n + 1− r)p′k, where p′k is the
new value of pk. Therefore we have,

(n + 1 − r)p′k = npk

+ cπk−1pk−1

− cπkpk

+ r
∑

j

ek+1|jjajpj

− r
∑

j

ek|jjajpj

− rakpk + mk, (4)

where ek|j is the conditional probability of following an
edge from a node of degree j and reaching a node of degree
k. Note that e0|j and ej|0 are always zero, and for an
uncorrelated network, ek|j = kpk/〈k〉. The terms involving
πk describe the flow of vertices with degree k− 1 to k and
k to k + 1 as a consequence of edges gained due to the
addition of new vertices. The first two terms involving aj

describes the flow of vertices with degree k+1 to k and k to
k− 1 as vertices lose edges as a result of losing neighbors.
The term −rakpk represents the direct removal of a node
of degree k at rate r. Finally mk represents the addition
of a vertex with degree k. Processes where vertices gain or
lose two or more edges vanish in the limit of large n and
are not included in equation (4).

The rate equation described above presents a
formidable challenge due to the appearance of ek|j from
the terms representing deleted edges from lost neigh-
bors. Rate equations for recovery schemes based on edge
rewiring are slightly easier to deal with. Upon failure, all
edges connected to that node are rewired so that the de-
grees of the deleted node’s neighbors do not change, and
this term does not appear. The specific case of preferential
failure in power-law networks was considered previously
in this context by [14]. However, this recovery protocol
can only be used on strictly growing networks, because
a network of constant size would become dense under its
application. Moreover, it is dependent on the power-law
structure of the network. The methods described here are
general and are applicable to arbitrary degree distribu-
tions.

Apart from edge rewiring, the special case of random
deletion also leads to a significant simplification. Uniform
deletion amounts to setting ak = 1. Doing so, then leads
to the following,

∑

j

ek|jjpj = kpk, (5)

which renders equation (4) independent of ek|j and thus
independent of any degree-degree correlations. Random
deletion hence closes equation (4) for pk, enabling us to
seek a solution for the degree distribution for a given mk

and πk. With non-uniform deletion, the degree distribu-
tion depends on a two-point probability distribution, and
as we shall see in Section 3.2, the two-point probability
distribution will depend on the three-point probability dis-
tribution and so on. This hierarchy of distributions, where
the n-point distribution depends on the n+1-point distri-
bution, is not closed under non-uniform failure and hence
it is difficult to seek an exact solution for the degree dis-
tribution. Nevertheless, in the following, we demonstrate
a method that allows us to navigate our way around this
problem.

As mentioned before, for the purposes of this paper we
will be interested in a network of constant size, where the
rate of attack is compensated by the rate of repair. Assum-
ing that the network reaches (or already is) a stationary
distribution and does not possess degree-degree correla-
tions, we set r = 1 and can further simplify equation (4).
Let 〈k〉a be the mean degree of nodes removed from the
network (i.e. 〈k〉a =

∑
k kakpk), and 〈k〉 the mean degree

of the original degree distribution pk. Then we have,

0 = cπk−1pk−1

− cπkpk + (k + 1)
〈k〉a
〈k〉 pk+1

− k
〈k〉a
〈k〉 pk − akpk + mk. (6)

The evolution process, specifically non-uniform removal of
nodes, can and in many cases will introduce degree-degree
correlations into our networks. In order to confront this is-
sue, we will first find choices for mk and πk that satisfy
the solutions to the rate equation, for a given pk, in a
network that is uncorrelated. We will then demonstrate
that a special subset of those solutions for mk and πk is
an uncorrelated fixed point of the rate equation for the
degree-degree correlations. This opens up the possibility,
that a network that initially has no degree-degree corre-
lations will not develop correlations from the evolution
process.

Although the rate equation described in equation (6)
is fairly complicated, it is a relatively straightforward ex-
ercise to determine the relation between edges added to
those removed. Multiplying equation (6) by k, summing
over k and rearranging yields 〈k〉a = c. This equation is
simple to interpret. Since the network has a constant fixed-
point degree distribution, the average degree of the net-
work remains constant, and therefore edges are removed
and added at the the same rate.

3 Recovery from attacks

In this section we describe our method under which net-
works can recover from various forms of attack. The types
of attack we consider are those studied generally by most
authors (though in static networks), namely preferential
and targeted attacks.

Random failures are the most generally studied
schemes in both static and evolving networks, in view
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of the fact that they lend themselves to relatively sim-
ple analysis. These types of failures may be representa-
tive, say, of disruption of power lines or transformers in a
power grid owing to extraneous factors such as weather.
However, the functionality of most networks often depends
on the performance of higher degree nodes, consequently
non-uniform attack schemes focus on these. For example,
in a peer-to-peer network, a high degree node could be
a central user with large amounts of data. High degree
could also be indicative of the amount of load on a node
during its operation, or on the public visibility of a per-
son in a social network. It is reasonable to assume that a
malicious entity such as a computer virus is more likely to
strike these important nodes. Holme et al. [21] have em-
ployed this removal strategy (among others) on a variety
of simulated and real networks and have found it to be
highly effective in disrupting the structure of the attacked
network.

We simulate these kinds of attacks using preferential
failure ak ∝ k, that sample nodes in proportion to their
number of connections, and through an outright attack on
the highest degree nodes represented by ak ∝ θ(k−kmin),
where θ(x) is the Heaviside step function. Our method of
compensation will involve control over two processes: the
first where our newly incoming/repaired vertex chooses a
degree for itself drawn from some distribution mk, and
second, the process by which this vertex decides to at-
tach to any other vertex in the network, governed by the
attachment kernel πk.

3.1 Using mk and the attachment kernel πk

Our goal here is to solve for the attachment kernel πk,
that will preserve the original probability distribution pk,
subject to a deletion kernel ak for some choice of mk.
We will assume that the final network is uncorrelated and
work with equation (6), keeping in mind that any arbitrary
choice of mk and πk is probably not consistent with that
assumption.

Introducing the cumulative distribution for the at-
tacked and newly added vertices, Ak and Mk respectively,

Ak =
∞∑

l=k

alpl, Mk =
∞∑

l=k

ml, (7)

we sum equation (6) from k = k′ + 1 to ∞, noting that
〈k〉a = c for our steady state network. This leads to the
following relation,

πkpk =
(k + 1)pk+1

〈k〉 +
Ak+1 − Mk+1

c
. (8)

Dividing both sides by pk gives us an expression for the
attachment kernel,

πk =
1
pk

[
(k + 1)pk+1

〈k〉 +
Ak+1 − Mk+1

c

]
.

(9)

Equation (9) represents the set of possible solutions for
the attachment kernel that will lead to the desired degree
distribution, given that the final network is uncorrelated.
The correct choice of solution from the above set, must
obey the consistency condition, that when inserted into
the rate equation for the degree-degree correlations, the
correlations vanish. In Section 3.2, we will show that the
following ansatz chosen from the above set is such a choice:

mk = akpk,

πk =
(k + 1)pk+1

〈k〉 pk
. (10)

Equation (10) was previously derived by [8] for the case
of random deletion. Here we posit that it works more gen-
erally for the case of non-uniform attack when our initial
network is uncorrelated (with some caveats that will be
explained shortly).

The choice of πk makes intuitive sense because the
quantity (k + 1)pk+1/ 〈k〉 is the probability distribution
governing the number of edges belonging to a node,
reached by following a randomly chosen edge to one of its
ends, not including the edge that was followed. This is one
less than the total degree of the node and is also referred to
as the excess degree distribution. Note that in our model
we specify the degree of incoming nodes. Therefore the ap-
pearance of the excess degree distribution is a signature
of an uncorrelated network, implying the newly arriving
edges are being introduced in an uncorrelated fashion.

There are basically two conditions for the existence of
a solution given by Equation (10); akpk must be a valid
probability distribution, and 〈k〉 must be finite. These are
not very stringent conditions and are typically satisfied by
most degree distributions. In other words, barring some
pathological cases, it is always possible to find a solution
of the form of Equation (10). There is an additional con-
sideration, the deletion process may lead to nodes of de-
gree zero in a network that originally did not have any
such nodes. While the fraction of such nodes is vanish-
ingly small for networks with say, Poisson degree distribu-
tions, they may be non-trivial for power-law networks. As
such, it is important to set π0 (the probability to attach
to a node of degree zero) to a generous value in order to
reconnect these nodes to the network.

We are now in a position to effect our repair on the
network. Given the original degree distribution pk and
the form of the attack ak, Equation (10) gives us the pre-
cise recipe for recovering the degree distribution. We need
to sample the degrees of the newly introduced nodes in
proportion to the product of the deletion kernel and the
degree distribution, and then attach these edges in pro-
portion to the excess degree distribution of the network.
To test our repair method, we provide four examples for
initially uncorrelated networks with 10 000 nodes gener-
ated using the configuration model [22,23]. In the config-
uration model, only the degrees of vertices are specified,
apart from this sole constraint the connections between
vertices are made at random.

The simulation results show the initial degree distri-
bution and the compensated one subject to two types of
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Fig. 1. Degree distribution of a Poisson network (104 nodes)
with mean µ = 10, under preferential attack ak ∝ k and uni-
form attachment πk = 1 using mk = akpk.

attacks on Poissonian networks with degree distribution
given by,

pk =
e−µµ−k

k!
. (11)

In Figure 1 we show the resulting degree distribution
where nodes were attacked preferentially, i.e. ak ∝ k, while
in Figure 2 we show the case for targeted attack only on
high degree nodes represented by ak ∝ Θ(k−kmin) where
kmin is the minimum degree of the node attacked. The
degrees of newly added nodes were chosen from the dis-
tribution akpk with the attachment kernel πk set to one,
corresponding to the solution of equation (10) after sub-
stituting in the appropriate pk. The data points in all the
figures are averaged over multiple realizations of the net-
work each subject to 105 iterations of addition and dele-
tion. The points along with corresponding error bars rep-
resent the final degree distribution, whereas the solid line
represents the initial network. As the figures show, the fi-
nal networks are in excellent agreement with the initial
degree distribution.

We employ the same attack kernels, ak ∝ k and a
targeted attack only on high degree nodes represented by
ak ∝ Θ(k − kmin) on two other examples. Our first exam-
ple network has links distributed according to a power-law
with an exponential cutoff,

pk =
{

Ck−γe−k/κ k �= 0,
0 k = 0 (12)

C is a normalization constant which in this case is
1/Liγ(e−1/κ), where the function Liν(z) is the poly-
logarithm function defined as:

Liv(z) =
∞∑

k=1

zk

kν
. (13)

The exponential cut-off has been introduced for three rea-
sons. First, many real world networks appear to show this
cutoff [24] and second, it renders the distribution normal-
izable for ranges of the exponent γ ≤ 2. Finally, for a pure
power-law network it is in principle possible to assign a
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Fig. 2. Degree distribution of a Poisson network (104 nodes)
with µ = 10, under high degree attack ak ∝ Θ(k − 12) and
uniform attachment πk = 1 using mk = akpk.

degree to a node that is greater than the system size. The
exponential cutoff ensures that the probability for this to
happen is vanishingly small. In the other examples that we
consider, the functional form of the distribution already
ensures this property.

The second network has an exponential distribution
given by,

pk = (1 − e−λ)e−λk. (14)

Figure 3 shows the results for the exponentially dis-
tributed network (λ = 0.4) undergoing targeted attack.
In Figure 4 we show the resulting degree distribution for
the power-law network (γ = 3 and κ = 100) where nodes
were attacked preferentially. Both figures indicate the ini-
tial and final networks are in excellent agreement.

At this point, aside from the technical details, it is
worth reminding ourselves of the big picture. We have
demonstrated above that if a network with a certain de-
gree structure is subjected to an attack that aims to desta-
bilize that structure, one can recover the same, by manip-
ulating the rules by which vertices are introduced to the
network. The rules that we employ in our repair method
are dependent on the types of attacks that our networks
are subject to. In the following section we give a detailed
justification of the employment of our method.

3.2 Neglecting degree-degree correlations

In order for our results from the previous sections to be
valid, we must demonstrate that our initially uncorrelated
networks remain uncorrelated under our repair scheme.
To accomplish this, we will define a rate equation for the
degree-degree correlations and demonstrate that the un-
correlated network is a fixed point of this equation. Our
rate equation will describe the evolution of the expected
number of edges in the network with ends of degree k and
l.

Let the expected number of such edges in the network
be,

mel,k, (15)
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Fig. 3. Degree distribution of an exponential network (104

nodes) with λ = 0.4 under targeted attack ak ∝ Θ(k−5) using
πk from equation (10) after setting mk = akpk.

where m = n〈k〉/2, and el,k is the probability that a ran-
domly selected edge has degree k at one end and degree l
in the other. The expected number of edges after one time
step where we add c and take away 〈k〉a edges is then,

[m + c − 〈k〉a]e′l,k = mel,k + ∆, (16)

where ∆ represents all other edge addition and removal
processes.

We have already established that in the steady state
case, 〈k〉a = c irrespective of the degree distribution, so
our goal is equivalent to showing that ∆ is equal to zero
for an uncorrelated network generated/repaired with our
special choices of πk and mk. As a result e′k,l = ek,l, im-
plying that the degree-degree correlations (if any) remain
constant over time.

We will assume that our network is locally tree-like,
something which holds true for most random graphs. In
addition we will only consider processes out to second
nearest-neighbors of a node. These assumptions allows us
to avoid including terms in the rate equation represent-
ing removal of nodes with neighbors that are connected
to each other. Nevertheless, there are a large number of
remaining processes that we will need to consider.

To start things off, note that the rate equation is sym-
metric in the indices l and k. Any process that contributes
to changing k while holding l constant also contributes to
changing l while holding k constant. We can therefore con-
sider contributions to ∆ from ek−1,l, ek,l and ek+1,l and
add on the corresponding symmetric terms at the end.
The first process we need to take into account is a direct
addition of a node of degree l. This contributes two flows
to the rate equation, lπk−1pk−1ml and −lπkpkml. Simi-
larly, the direct deletion of a node of degree l contributes
−lek|lalpl and lek+1|lalpl. Next, we will have to take into
account second nearest-neighbor processes. We can be cer-
tain that these terms are of the same order by merely
counting the number of unsummed probability distribu-
tions that go into each process. There will be two terms for
the attachment process representing the situation where a
new node of any degree attaches to a node of degree k or
k − 1, that was previously attached to a node of degree l.
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Fig. 4. Log-binned degree distribution of a power law net-
work (104 nodes) with exponent γ = 3 and exponential cutoff
κ = 100, under preferential attack ak ∝ k using πk from equa-
tion (10) after setting mk = akpk.

These terms are −ckel|kπkpk and c(k− 1)el|k−1πk−1pk−1.
Similarly there are two removal processes, where a node
of any degree that is removed from the network was pre-
viously attached to a node of degree k or k + 1 that has
neighbor(s) of degree l. Unfortunately these terms intro-
duce three-point correlations into the rate equation. Anal-
ogous to methods employed in similar hierarchy problems,
we use a moment-closure approximation to represent these
processes as a product of two two-point correlations in the
following manner,

−
∑

j

(k − 1)el|kek|jjajpj +
∑

j

kel|k+1ek+1|jjajpj . (17)

Adding all of these terms together our final equation
for ∆ is,

∆ = lπk−1pk−1ml − lπkpkml + lek+1|lalpl − lek|lalpl

+ c(k − 1)el|k−1πk−1pk−1 − ckel|kπkpk

+
∑

j

kel|k+1ek+1|jjajpj −
∑

j

(k − 1)el|kek|jjajpj ,

(18)

in addition to terms where l and k are interchanged.
After inserting the appropriate πk and mk from equa-

tion (10) along with the uncorrelated solution ek|l =
kpk/〈k〉, it can be shown that,

∆ = 0. (19)

According to equation (16), there exist a set of solutions
such that an initially uncorrelated network will not de-
velop any degree-degree correlations as a consequence of
the evolution process. The attachment kernel that was em-
ployed in the network evolution process, described in Sec-
tion 3.1, was a subset of these solutions. This allowed the
repair method to be employed by maintaining negligible
correlations in the network.

One must point out, that we have not explicitly
demonstrated the stability of the uncorrelated solution to
perturbations. For example fluctuations in ek,l or in the
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number of edges may drive the network away from the
uncorrelated steady-state. An analytical approach to de-
termine this, say using linear stability analysis is difficult,
due to the numerous related probability distributions in-
volved. So instead we resort to a numerical approach. We
measured the Pearson correlation coefficient between the
degrees of nodes at both ends of an edge for all our model
networks. For the Poisson and exponential cases, the cor-
relations remained negligible during the evolution process.
On the other hand, the power-law network developed non-
trivial correlations. We have not been able to determine
whether the appearance of these correlations was due to
finite-size effects, or instability in the uncorrelated solu-
tion, or to some other cause. The results show that the
agreement between the initial and final degree distribu-
tions is very good, and it seems that in this particular
case, the correlations did not demonstrate a significant
effect on the final state of the network.

4 Conclusion

In this paper, we have shown how to preserve a network’s
degree distribution from various forms of attack or fail-
ures by allowing it to adapt via the simple manipulation
of rules that govern the introduction of nodes and edges.
We based our analysis on a rate equation describing the
evolution of the network under arbitrary schemes of ad-
dition and deletion. In addition to choosing the degree of
incoming nodes, we allow ourselves to choose how nodes
attach to the existing network. To deal with the special
case of non-uniform deletion we have introduced a rate
equation for the evolution of degree-degree correlations
and have used that in combination with the equation for
the degree distribution to come to our solution. We have
provided examples of the applicability of this method us-
ing a combination of analytical techniques and numerical
simulations on a variety of degree distributions, yielding
excellent results in each case.

The structure of many networks in the real world is
crucially related to their performance. Many authors have
seized on the fact that technological networks such as the
internet and peer-to-peer networks are power-law in na-
ture, and have used this to design efficient search schemes
among other things. Loss of structural properties of these
networks then lead to severe constraints on their perfor-
mance. Recent empirical studies [25] have suggested that
node removal, for example, in the world wide web, is typ-
ically non-uniform in nature. In view of this, it is crucial
for researchers to come up with effective solutions to try
and manage these types of disruptions. To the best of our
knowledge, there is a considerable gap in understanding
the non-uniform deletion process of nodes and edges and
corresponding methods to deal with them. This paper be-
gins to address this gap.

It must be pointed out that the methods we have de-
scribed depends crucially on the assumption of negligible
correlations as the network evolves. Curiously enough, in
our example power-law network, we were able to get very

good agreement between the initial and final degree distri-
butions, in spite of the appearance of non-trivial correla-
tions. It will certainly be interesting to see if our methods
can be extended to the case of networks with strong cor-
relations, and other metrics describing network structure.
Perhaps it is possible to directly confront the rate equation
for the degree-degree correlations, although this seems a
difficult prospect at the moment. The idea of preserving
the structure of networks from attacks by allowing it to re-
act in real-time is a relatively nascent one and the authors
look forward to more developments in this area.

The authors thank Mark Newman for illuminating discussions.
This work was funded by the James S. McDonnell Foundation.
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